
Examples for Research Project Milestone 1

Prof. William Enck

February 7, 2021

1 Example for Empirical Study

1.1 PoliCheck
Note: This example project proposal corresponds to Andow et al., “Actions Speak Louder than Words: Entity-
Sensitive Privacy Policy and Data Flow Analysis with PoliCheck”, In Proceedings of the USENIX Security Sym-
posium, 2020.

Title: Actions Speak Louder than Words: Entity-Sensitive Privacy Policy and Data Flow Analysis with PoliCheck

Research Question: Privacy is a long-standing open research challenge for mobile applications. Literature has pro-
posed various program analysis tools for Android and iOS apps, often citing private-information disclosure as
motivations. However, just because an application sends privacy-sensitive information to the Internet does not
mean there is a privacy violation. A recent idea proposed in research is to compare the flows of privacy sensitive
information observed for an application to the language in the application’s privacy policy. While there have
been some studies that have attempted to measure this flow-to-policy consistency, their measurement was limited
in that is not sensitive to the entity receiving the information. For example, they assume that if a privacy policy
states the app will share sensitive data to any party (first or third party), then it is okay to send to any party (first
or third-party). This assumption may falsely claim that an app is consistent with its policy if, for example, the
policy states that only the first-party (app developer) will receive a type of data, but the app also sends the data
to an advertiser. This leads to the following research question:

Does entity-sensitive flow-to-policy consistency identify more inconsistent mobile applications than entity-
insensitive analysis, and if so, what is the impact of the previous over-estimation?

Proposed Methodology: We will formally define an entity-sensitive flow-to-policy consistency model for mobile
applications. We will then build upon two prior tools: (1) PolicyLint, which extracts data sharing statements
from privacy policies, and (2) AppCensus, which dynamically analyzes mobile apps to identify when privacy
sensitive information is sent to the network. We will apply these tools to a large set of free mobile applications
and their privacy policies, which we will download from the Google Play Store. Using this data, we will answer
the above research question.

Expected Findings: We expect to find that without entity-sensitive analysis, prior flow-to-policy consistency mea-
surements have significantly underestimated the problem, and that many applications send information to third-
parties (e.g., analytics servers) that are not mentioned in the app’s privacy policy.

1



2 Example for Building a Solution
Note: This example proposal corresponds to Nadkarni et al., “Practical DIFC Enforcement on Android”, In proceed-
ings of the USENIX Security Symposium, 2016.

Title: Practical DIFC Enforcement on Android

Problem: Application-based modern operating systems, such as Android, thrive on their rich application ecosystems.
Applications integrate with each other to perform complex user tasks, providing a seamless user experience.
To work together, applications share user data with one another. Such sharing exposes the user’s private and
enterprise information to the risk of exfiltration from the device. Unfortunately, Android’s permissions are only
enforced at the first point of access. Once data is into the memory of an untrusted application, it can be exported.

The classic way to address this problem is using Information Flow Control (IFC). Unfortunately, incorporating
IFC into commodity operating systems has been historically challenging, because applications often deal with
many different types of information during an execution, leading to poor information tracking precision and
subsequently a phenomenon commonly known as label explosion or label creep. Several prior works have
identified that Android’s runtime model, which is based on collections of event-driven components (e.g., activity
components), may be particularly amenable to IFC. However, attempts of incorporating IFC into Android have
been limited, frequently breaking backwards compatibility by improperly killing processes or blocking until an
application voluntarily exits, which can lead to deadlocks.

Solution Idea: We propose a novel solution to IFC in Android called lazy polyinstantiation. The key idea is that our
approach manages instances of each application, their components, and their storage for each secrecy context
from which an application is called.

Solution Approach: We will create a formal model for incorporating lazy polyinstantiation into Android and then
modify the Android Open Source Project (AOSP) with logic that encodes our model. We will then formally
evaluate the security of our model, as well as empirically evaluate the compatibility of our modified Android
using a collection of real applications downloaded from the Google Play Store.

Expected Findings: We expect that our lazy polyinstantiation model will be secure. We expect that our model and
implementation will be compatible with existing applications. For example, it will not require improperly killing
processes or blocking. Finally, we expect the performance overhead of our implementation to be minimal.

2


	Example for Empirical Study
	PoliCheck

	Example for Building a Solution

